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Damping Analysis of Composite Plates
with Zig-Zag Triangular Element

D. G. Lee¤ and J. B. Kosmatka†

University of California, San Diego, La Jolla, California 92093-0085

A three-node � at triangular element incorporating layerwise zig-zag theory is developed that is suitable for
analyzing damped laminated composite structures. By the use of an interdependent kinematic relation, the higher-
order shear rotations are replaced by in-plane displacements, a transverse displacement, and section rotations,
which result in three translations and two rotations. Natural frequencies and modal loss factors of cantilevered
laminated plates with embedded damping layers are calculated with the zig-zag triangular element and compared
to the experimental results and MSC/NASTRAN results using a layered combination of plate and solid elements.
Frequencies and corresponding loss factors of symmetric and antisymmetric damped laminated cantilever plates
as a function of � ber angle are also calculated.

I. Introduction

I NTEGRALLY embedding a viscoelastic damping layer within
a laminated composite structure is a very effective way of sup-

pressing fatigue-sensitive � exural vibrations. Embedded damping
layers dissipate vibratory energy, predominantly through shear dur-
ing � exuralmotion.There is a need to developan accurate laminated
theory that accounts for arbitrary ply thickness variations, extreme
rigiditydifferences,and ply loss factorvariationsin laminatedstruc-
tures with embedded viscoelastic layers.

Yan and Dowell,1 Rao and Nakra,2 Douglas and Yang,3 Miles
and Reinhall,4 and Barrett5 developed simple differential equations
for sandwich plates for a constraining layer damping model. Alam
and Asnani6;7 developed a general multilayered plate model con-
sisting of an arbitrary number of alternating stiff and soft layers
of orthotropic materials. Johnson and Kienholz8 analyzed a sand-
wich plate with a damping core by a modal strain energy method
implemented in NASTRAN. Malhotra et al.9 studied the effect of
� ber orientation on the vibration and damping behavior of thin or-
thotropictriangularplates. Saravanosand Pereira10 and Saravanos11

incorporated discrete-layer laminate theory (DLLT) into the mod-
eling of composite structures with interlaminar damping layers.
DLLT assumes a discrete yet piecewise continuous displacement
� eld through the thickness. The number of unknowns of DLLT de-
pends on the number of subdivision through the thickness. Hence,
DLLT requires enormous computing costs to predict accurately
three-dimensionalstress distribution,which is vitally important for
the damping analysis of laminated composite structures with em-
bedded viscoelastic layers.

Di Sciuva12¡14 developed the higher-order zig-zag displacement
theory based on the re� ned higher-orderdisplacement� eld that sat-
is� es a priori traction-freeboundaryconditionssuperimposedby the
zig-zag displacement � eld. Di Sciuva15 derived a higher-order zig-
zag displacement theory and developed a three-node, conforming,
triangular element that has 10 nodal degrees of freedom (DOF):
two in-plane displacements, two shear rotations, and a transverse
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displacementwith its � rst and second derivatives (section rotations
and curvatures). This element has been successfully applied to the
static bending and free vibration behavior of composite plates. Cho
and Parmerter16 derived an ef� cient higher-order zig-zag displace-
ment � eld and developed a triangular bending element based on
the shape functions suggested by Specht.17 This resulted in a non-
conforming element having � ve nodal DOF: two shear rotations, a
transverse displacement, and the two section rotations. Lee,18 Lee
and Waas,19;20 and Lee et al.21 developedsector zig-zagelement and
studied the effect of � ber orientation on the stability and transient
responseof spinningcompositedisksunder frictionalload.Averill22

and Averill and Yip23 have developed the higher-order zig-zag dis-
placement � eld and corresponding beam elements and accurately
predicted the stress distribution through the thickness of laminated
structures.

In the presentwork, a three-node� at triangularelementusing the
zig-zag theory and interdependentkinamatic relations is developed.
With interdependentkinematic relations, the higher-ordershear ro-
tation DOF are replacedby the in-planedisplacements,a transverse
displacement, and the section rotations. The remaining transverse
displacement and section rotations are interpolated based on shape
functions suggestedby Specht17 that result in three translationsand
two rotations at each vertex of the triangular element. Natural fre-
quencies and modal loss factors of a cantilevered rectangular lami-
nated plate with an embeddeddamping layer are calculatedwith the
present three-node zig-zag triangular element. Various � ber orien-
tations, border materials, and damping patch sizes are investigated.
Current results are compared to experimental results and analytical
(MSC/ NASTRAN) resultsusinga layeredcombinationof plateand
solid elements. Frequencies and correspondingloss factors of sym-
metric and antisymmetric damped laminated cantilever plates as a
functionof � ber angle are also calculatedwith the zig-zagtriangular
element.

II. Theoretical Development
Consider a plate composed of multiple layers. The improved lay-

erwise zig-zag displacement � elds for the kth layer are de� ned as
in Ref. 24:

u.k/ D u0 ¡ z
@w0

@x
C h.k/

11 Áx C h.k/

12 Áy

v.k/ D v0 ¡ z
@w0

@y
C h.k/

21 Áx C h.k/

22 Áy

w.k/ D w0 (1)

where u0 and v0 are the in-plane displacements, w0 is a transverse
displacement, Áx and Áy are the higher-order shear rotations, and
h.k/

11 ; h.k/

12 ; h.k/

21 ; h.k/

22 are de� ned as follows:
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h.k/

11 D z2 C z3 f1 C
k ¡ 1X

i D 1

.z ¡ zi /.a2i C a3i f1 C b3i f3/

h.k/

12 D z3 f2 C
k ¡ 1X

i D 1

.z ¡ zi /.a3i f2 C b2i C b3i f4/

h.k/

21 D z3 f3 C
k ¡ 1X

i D 1

.z ¡ zi /.c2i C c3i f1 C d3i f3/

h.k/

22 D z2 C z3 f4 C
k ¡ 1X

i D 1

.z ¡ zi /.c3i f2 C d2i C d3i f4/ (2)

where f1; f2; f3; f4; a2i ; a3i ; b2i ; b3i ; c2i ; c3i ; d2i ; d3i are evaluated
as shown in Appendix A.

A. Interdependent Kinematic Relations
In the case of symmetric layups, the in-plane displacement

distribution through the thickness should be symmetric about the
midplane, which suggests that integration through the thickness of
in-plane displacements .u.k/; v.k//, multiplied by normal material
constants in each direction set to zero, gives the interdependent
kinematicrelationbetween thehigher-ordershearrotations.Áx ; Áy/,
in-planedisplacements.u0; v0/, the transversedisplacementw0 , and
the section rotations .@w0=@x; @w0=@y/ as follows:

NX

k D 1

Z zk

zk ¡ 1

C .k/

11

³
u ¡ z

@w

@x
C h.k/

11 Áx C h.k/

12 Áy

´
dz D 0

NX

k D 1

Z zk

zk ¡ 1

C .k/

22

³
v ¡ z

@w

@y
C h.k/

21 Áx C h.k/

22 Áy

´
dz D 0 (3)

after the integration through thickness is performed, Eq. (3) is read
as

A11u ¡ B11
@w

@x
C Q11Áx C Q12Áy D 0

A22v ¡ B22
@w

@y
C Q23Áx C Q24Áy D 0 (4)

where .A; B; Q/ are de� ned in Appendix B. Equation (4) is rear-
ranged for Áx and Áy in terms of u0; v0; @w0=@x , and @w0=@y as

»
Áx

Áy

¼
D

"
¡c1

x c3
x c2

x ¡c4
x

c1
y ¡c3

y ¡c2
y c4

y

#

8
>>>>>><

>>>>>>:

u0

v0

@w0

@x

@w0

@y

9
>>>>>>=

>>>>>>;

(5)

where the constants in Eq. (5) are de� ned as

c1
x D

A11 Q24

De
; c2

x D
B11 Q24

De
; c3

x D
A22 Q12

De

c4
x D

B22 Q12

De
; c1

y D
A11 Q23

De
; c2

y D
B11 Q23

De

c3
y D

A22 Q11

De
; c4

y D
B22 Q11

De

De D Q11 Q24 ¡ Q12 Q23 (6)

B. Strain–Displacement Relations
The linear strain–displacement relations for the kth layer in a

Cartesian coordinate system are de� ned as follows:

8
<

:

ex

ey

°x y

9
=

;

.k/

D

2

664

1 0 0 ¡z 0 0 h.k/

11 h.k/

12 0 0

0 1 0 0 ¡z 0 0 0 h.k/

21 h.k/

22

0 0 1 0 0 ¡z h.k/

21 h.k/

22 h.k/

11 h.k/

12

3

775f"g

(7)
»

°yz

°x z

¼ .k/

D

2

4h.k/

21;z h.k/

22;z

h.k/

11;z h.k/

12;z

3

5 f° g (8)

and the general membrane-bending strain vector f"g using the
interdependentkinematic relation (5) is de� ned as

f"g D [TB ]fN"g (9)

where [TB ] is de� ned in Appendix C and fN"g is

fN"g D
»

@u0

@x
;

@v0

@x
;

@u0

@y
;

@v0

@y
;

@2w0

@x2
;

@2w0

@y2
;

@2w0

@x@y

¼ T

(10)

The general higher-order shear rotation vector f° g using the inter-
dependent kinematic relation (5) is de� ned as

f° g D [TS ]f N° g (11)

where [TS] is de� ned in Appendix C and f N° g is

f N° g D
»

u0; v0;
@w0

@x
;

@w0

@y

¼ T

(12)

C. Complex Constitutive Relations
The reduced-transformedcomplex orthotropic stress–strain rela-

tion under the plane stress assumption (¾z D 0) for any individual
layer (kth layer) is de� ned as

f¾ g.k/ D
¡
[ NC].k/ C i [ NC].k/[ Ń].k/

¢
feg.k/ (13)

where the stress and the linear elastic strain are read as

f¾ g.k/ D f¾x ; ¾y; ¿yz ; ¿xz ; ¿x yg.k/T
(14)

feg.k/ D fex ; ey; °yz ; °x z; °xy g.k/T
(15)

The reduced-transformed material constants [ NC] and transformed
loss factors [ Ń] are de� ned in Appendix D.

D. Strain Energy and Kinetic Energy
The bending strain energies per unit area of the N -layered plate

are de� ned as

UB D 1

2

Z

A

"
NX

k D 1

Z zk

zk ¡ 1

±
¾ .k/

x e.k/
x C ¾ .k/

y e.k/
y C ¿ .k/

x y ° .k/
x y

²
dz

#
dA

(16)

and the shear strain energiesper unit area of the N -layeredplate are
de� ned as

US D
1

2

Z

A

"
NX

k D 1

Z zk

zk ¡ 1

±
¿ .k/

x z ° .k/
x z C ¿ .k/

yz ° .k/
yz

²
dz

#

dA (17)

The kinetic energy per unit area of the N -layered plate is given by

T D 1

2

Z

A

(
NX

k D 1

Z zk

zk ¡ 1

½.k/

"³
@u.k/

@ t

´2

C
³

@v.k/

@t

´2

C
³

@w.k/

@t

´2
#

dz

)

dA (18)
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The stress resultants are de� ned as follows:

µ
Nx Ny Nxy

Mx My Mx y

¶
D

NX

k D 1

Z zk

zk ¡ 1

»
1

z

¼ £
¾ .k/

x ¾ .k/
y ¿ .k/

x y

¤
dz (19)

2

6664

Px1 Px y1

Px2 Px y2

Py1 Px y3

Py2 Px y4

3

7775
D

NX
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Z zk

zk ¡ 1

8
>>>>><

>>>>>:

h.k/

11

h.k/

12

h.k/

21

h.k/

22

9
>>>>>=

>>>>>;

£
¾ .k/
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y ¿ .k/

x y

¤
dz

(20)

2

6664

Rx1

Rx2

Ry1

Ry2

3

7775
D

NX
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Z zk
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8
>>>>><

>>>>>:

h.k/

11;z

h.k/

12;z

h.k/

21;z

h.k/

22;z

9
>>>>>=

>>>>>;

£
¿ .k/

x z ¿ .k/
yz

¤
dz (21)

After the integrationthroughthe thicknessis performed, thebending
strain energy is written as

UB D 1
2

Z

A

fN"gT [TB ]T [ ODB ][TB ]fN"g dA (22)

where the b ODB c is de� ned as

b ODB c D [DB ] C i
£
Dd

B

¤
(23)

[DB ] D

2

64
[A] ¡[B] [Q]

¡[B] [D] ¡[E]

[Q]T ¡[E]T [G]

3

75

£
Dd

B

¤
D

2

64
[Ad ] ¡[Bd ] [Qd ]

¡[Bd ] [Dd ] ¡[Ed ]

[Qd ]T ¡[Ed ]T [Gd ]

3

75 (24)

The shear strain energy is written as

US D
1

2

Z

A

f N° gT [TS]T [ ODS][TS]f N° g dA (25)

where the b ODSc is de� ned as

b ODSc D [F ] C i [Fd ] (26)

The resultant elastic material constants .A; B; D; Q; E; G; F/ and
the damping constants Ad ; Bd ; Dd ; Qd ; Ed ; Gd , and Fd are de� ned
in Appendix B. The velocity vector using the interdependent kine-
matic relation (5) is de� ned as

V D [T½ ]VR (27)

where bT½ c is de� ned in AppendixC and the reducedvelocityvector
VR is de� ned as

VR D
»

Pu0; Pv0; Pw0;
@ Pw0

@x
;

@ Pw0

@y

¼ T

(28)

and the effective inertia constants are de� ned as

[Z½ ] D
2

66666666666664

I0 0 0 ¡I1 0 H 11
0 H 12

0

0 I0 0 0 ¡I1 H 21
0 H 22

0

0 0 I0 0 0 0 0

¡I1 0 0 I2 0 ¡H 11
1 ¡H 12

1

0 ¡I1 0 0 I2 ¡H 21
1 ¡H 22

1

H 11
0 H 21

0 0 ¡H 11
1 ¡H 21

1

¡
H 2

11 C H 2
21

¢ ¡
H 12

2 C H 21
2

¢

H 12
0 H 22

0 0 ¡H 12
1 ¡H 22

1

¡
H 12

2 C H 21
2

¢ ¡
H 2

12 C H 2
22

¢

3

77777777777775

(29)

where I0 , I1, I2, H 11
0 , H 12

0 , H 21
0 , H 22

0 , H 11
1 , H 12

1 , H 21
1 , H 22

1 , H 2
11,

H 2
12, H 2

21 , H 2
22 , H 12

2 , and H 21
2 are de� ned in Appendix B. The kinetic

energy is written as

T D 1
2

Z

A

fVRgT [T½ ]T [Z½ ][T½ ]fVR g dA (30)

III. Three-Node Triangular Element
A three-node triangular element based on the improved higher-

order zig-zag displacement � eld (1) is developed (Fig. 1). The in-
plane displacementsu0 and v0 are linearly interpolated as

u0 D
3X

i D 1

ni u
i
0; v0 D

3X

i D 1

ni v
i
0 (31)

and the shape function ni is de� ned as

ni D ³i (32)

where ³i are the areal coordinate systems in a triangular element
(Fig. 1). The transverse displacement w0, which is C1 continuous
subparametric, is interpolated using the shape functions suggested
by Specht17 as

w0 D
3X

i D 1

¡
qi w

i
0 C gi µ

i
x C hi µ

i
y

¢
(33)

where

µ i
x D

³
@w0

@y

´

i

; µ i
y D ¡

³
@w0

@x

´

i

(34)

and qi ; gi , and hi are de� ned by Specht17 as

qi D Pi ¡ Pi C 3 C Pk C 3 C 2.Pi C 6 ¡ Pk C 6/

gi D b j .Pk C 6 ¡ Pk C 3/ C bk Pi C 6

h i D c j .Pk C 6 ¡ Pk C 3/ C ck Pi C 6 (35)

Fig. 1 Geometry and coordinate system for triangular element.
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Here, i; j , and k are the cyclic permutations of 1, 2, and 3 and

bi D y j ¡ yk ; ci D xk ¡ x j (36)

where xi and yi are the coordinates of each three vertices of the
triangular element. Pi are de� ned by Specht17 as

fPg D
©
³1; ³2; ³3; ³1³2; ³2³3; ³3³1; ³ 2

1 ³2

C 1
2 ³1³2³3[3.1 ¡ ¹3/³1 ¡ .1 C 3¹3/³2 C .1 C 3¹3/³3]³ 2

2 ³3

C 1
2
³1³2³3[3.1 ¡ ¹1/³2 ¡ .1 C 3¹1/³3 C .1 C 3¹1/³1]³ 2

3 ³1

C 1
2
³1³2³3[3.1 ¡ ¹2/³3 ¡ .1 C 3¹2/³1 C .1 C 3¹2/³2]

ª
(37)

where

¹1 D
l2
3 ¡ l2

2

l2
1

; ¹2 D
l2
1 ¡ l2

3

l2
2

; ¹3 D
l2
2 ¡ l2

1

l2
3

(38)

where l1; l2, and l3 are the lengths of the three sides of the triangle
(see Fig. 1). The membrane-bending and transverse shear strain
vectors with respect to the areal coordinate system are de� ned as

fN"g D [NB ]fdeg (39)

f N° g D [NS ]fdeg (40)

where the shape functions NB and NS are de� ned in Appendix E.
The elemental degrees of freedom fdeg are de� ned as

fdeg D ffdeg1; fdeg2; fdeg3g (41)

where

fdegi D
©
ui

0; vi
0; wi

0; µ i
x ; µ i

y

ª
; i D 1; 2; 3

Substituting Eqs. (39) and (40) into Eqs. (22) and (25) leads to the
stiffness matrices for the membrane-bending and transverse shear
part as

[K B ] D
Z 1

0

Z 1 ¡ ³1

0

[NB ]T [TB]T [DB ][TB ][NB ]2A d³2 d³1 (42)

[K S] D
Z 1

0

Z 1 ¡ ³1

0

[NS]T [TS]T [DS][TS][NS]2A d³2 d³1 (43)

£
K d

B

¤
D

Z 1

0

Z 1 ¡ ³1

0

[NB ]T [TB ]T
£
Dd

B

¤
[TB ][NB ]2A d³2 d³1 (44)

£
K d

S

¤
D

Z 1

0

Z 1 ¡ ³1

0

[NS ]T [TS]T
£
Dd

S

¤
[TS ][NS ]2A d³2 d³1 (45)

where sixth-order single-summation Gauss quadrature numerical
integrationfor triangles is used. The stiffness and damping matrices
are de� ned as

[K ] D [K B] C [K S]; [K D] D
¥

K d
B

¦
C

¥
K d

S

¦
(46)

The velocity vector is de� ned as

VR D [N½ ]f Pdeg (47)

where bN½c is de� ned in Appendix E. Substituting Eq. (47) into
Eq. (30) leads to the consistentmass matrix

[M ] D
Z 1

0

Z 1 ¡ ³1

0

[N½ ]T [T½ ]T [Z½ ][T½ ][N½ ]2A d³2 d³1 (48)

where the integration is conducted numerically with sixth-order
single-summationGauss quadrature.

IV. Governing Equations
The governing differential equations of motion for laminated

plates incorporating the improved higher-order zig-zag theory are
derived using Hamilton’s principle, as follows:

[M ]f Rd g C .[K ] C i [K D ]/fdg D f0g (49)

The eigenvalue problem Eq. (49) is solved to � nd the natural fre-
quencies and modal loss factors by the modal strain energy method
(MSE) with the subspace iteration method. The modal loss factor
of the nth mode is given by

´n D
fÂngT [K D]fÂng
fÂngT [K ]fÂng

(50)

where the nth normal mode fÂng is found by solving the undamped
free vibration problem.

V. Numerical Results
The natural frequencies and modal loss factors of various can-

tilevered rectangular laminated plates with an embedded damping
layer are calculated.Various � ber orientations,bordermaterials,and
damping layers are investigated.Current calculatedresults are com-
pared to the experimental results and analytical (MSC/NASTRAN)
results in which the face sheets are modeled with plate elements
(CTRIA) and the damping core is modeled with solid elements
(CPENTA). The plate nodes are to be offset to one surface of the
plate, coincident with the corner nodes of the adjoining solid ele-
ments. The offset plate elements have coupling between stretching
and bending deformations.

The cantilevered laminated rectangular plates consisted of
graphite/epoxy (GE) face sheets and a damping core layer. See
Fig. 2 for the components of the damped plates and Fig. 3 for
the geometric de� nition of the damping core layer. The mate-
rial properties for GE used for the face sheets are as follows:

Fig. 2 Damped plate components.

Fig. 3 Geometry of central core layer.



LEE AND KOSMATKA 1215

Shear modulus

Shear loss factor

Fig. 4 Mechanical properties of ISD113 viscoelastic polymer at 68±F
(20±C).

EL D 2 £ 107 psi (138 GPa), ET D 1:4 £ 106 psi (9.7 GPa), G LT D
8 £ 105 psi (5.5 GPa), GT T D 5 £ 105 psi (3.5 GPa), ºLT D 0:3, ½ D
1:485 £ 10¡4 lbf-s2/in.4 (1587 kg/m3 ), and hply D 0:0025 in.
(0.0635 mm). The loss factors used for the GE lamina are found
by correlating the experimental results of an undamped GE plate to
the � nite element solutions by the MSE:

´L D ´T D 0:0026; ´LT D ´T T D 0:026

The 3M ISD113 is used for the central damping core in this
study, and the shear modulus and loss factor for ISD113 are found
in the manufacturer supplied nomogram (Fig. 4) for the desired fre-
quency at the room temperature (68±F) (20±C): ½ISD113 D 0:917 £
10¡4 lbf-s2/in.4 (980 kg/m3). 3M AF32 is used for the central
core border material, and the shear modulus and loss factor for
AF32 are found in the manufacturer supplied nomogram (Fig. 5)
for the desired frequency at the room temperature (68±F) (20±C):
½AF32 D 0:989 £ 10¡4 lbf-s2/in.4 (1057 kg/m3 ). Figure 6 shows the
mesh representationused for the � nite element analysis. In Table 1,
a comparison of the required nodes and DOF for the current model
and MSC/NASTRAN model are presented.

The natural frequencies and modal loss factors are calculated by
the MSE and compared to the experimental results and NASTRAN
results with the MSE.

Analytical results using the present three-nodezig-zag triangular
element(THZ3R)arepresentedin Tables2–8 alongwith experimen-
tallymeasuredresultsandanalyticalresultsusingMSC/NASTRAN.
The vibration frequenciesand loss factors of the � rst bending (1B),
secondbending(2B), and � rst torsion(1T)modesof thecantilevered
composite plates are presented. The current results show good
agreement with the experimentally measured natural frequencies
and modal loss factors for various � ber angles and border materi-
als. MSC/NASTRAN results with plate–solid elements show good

Table 1 Details of � nite element scheme

Present MSC/NASTRAN
Parameter (THZ3R) (CTRIA/CPENTA)

Elements 1584 4752
Nodes 855 1710
DOF 4275 10260

Table 2 Calculated and experimental frequencies of cantilevered
undamped plate bb 02/§§ 15s/02 degcc bb 90 deg cc bb 02/§§ 15s/02 degcc

Present !; Hz Experiment

Mode .2 £ 6/ .4 £ 12/ .6 £ 18/ !; Hz ´

1B 32.18 32.05 32.01 31.21 0.003
1T 106.88 98.54 96.84 100.0 0.012
2B 208.46 202.03 200.68 194.6 0.004

Table 3 Frequencies and loss factors of cantilevered damped plate
bb 02 /§§ 15s/02 deg cc bb ISD 113 ¡¡ 0 deg GE cc bb 02/§§ 15s/02 degcc

!, Hz ´

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 28.4 29.94 30.18 0.014 0.016 0.011
1T 92.5 93.58 94.07 0.017 0.024 0.011
2B 163.5 157.48 159.43 0.059 0.065 0.059

Shear modulus

Shear loss factor

Fig. 5 Mechanical properties of AF-32 adhesive at 68±F.

Fig. 6 Finite element mesh representation.
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Table 4 Frequencies and loss factors of cantilevered damped plate
bb 02 /§§ 15s/02 deg cc bb ISD 113 ¡ ¡ 90 deg GE cc bb 02/§§ 15s/02 degcc

!, Hz ´

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 27.97 29.93 30.18 0.018 0.016 0.011
1T 83.23 93.56 94.05 0.022 0.024 0.011
2B 163.7 157.43 159.37 0.063 0.065 0.059

Table 5 Frequencies and loss factors of cantilevered damped plate
bb 02 /§§ 15s/02 deg cc [ISD 113 ¡ ¡ AF 32] bb 02/§§ 15s/02 degcc

!, Hz ´

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 27.46 29.82 30.05 0.028 0.02 0.016
1T 87.22 93.03 93.44 0.035 0.029 0.016
2B 161.4 155.04 156.55 0.077 0.077 0.071

Table 6 Frequencies and loss factors of cantilevered damped plate
bb 02/§§ 45s/02 degcc [ISD 113 ¡¡ 0 deg GE] bb 02 /§§ 45s/02 deg cc

!, Hz ´

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 24.83 26.32 26.51 0.008 0.007 0.003
1T 124.6 121.44 122.07 0.015 0.029 0.021
2B 147.9 148.32 150.05 0.037 0.033 0.027

Table 7 Frequencies and loss factors of cantilevered damped plate
bb 02 /§§ 45s/02 deg cc bb ISD 113 ¡ ¡ 90 deg GE cc bb 02/§§ 45s/02 degcc

!, Hz ´

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 24.44 26.32 26.51 0.007 0.008 0.003
1T 128.2 121.39 122.04 0.012 0.029 0.021
2B 145.3 148.25 149.99 0.05 0.033 0.027

Table 8 Frequencies and loss factors of cantilevered damped plate
bb 02/§§ 45s/02 degcc [ISD 113 ¡ ¡ AF32] bb 02 /§§ 45s/02 deg cc

!, Hz ´

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 23.93 26.27 26.44 0.017 0.01 0.006
1T 119.5 120.02 120.5 0.033 0.035 0.028
2B 144.0 146.49 147.67 0.052 0.043 0.038

agreement in natural frequenciesbut larger errors in the modal loss
factors because the plate–solid elements do not accurately repre-
sent the shear deformations in the damping core. The accuracy of
the MSC/NASTRAN plate–solid–plate model can be improved by
adding more solid elements through the core thickness but at an
enormous increase in computational cost.

A comparison of Tables 2 and 5 reveals that embedding an ISD
113/AF-32 damping core in a composite laminate can greatly in-
crease the damping loss factor over an undamped plate. These in-
creases for the � rst three modes are 9.3, 2.9, and 19.3 times, respec-
tively. A comparison of Tables 3, 4, and 5 for a � ber orientation of
15 deg and Tables 6, 7, and 8 for a � ber orientationof 45 deg reveals
that an AF32-border material produces higher modal loss factors
than a unidirectionalGE border because AF32 itself has signi� cant
damping capability. Further examination of Tables 3–8 reveal that
the bending frequencies and corresponding modal loss factors for
the � ber angle 15 deg are greater than for the � ber angle 45 deg,
whereas the torsional frequencies and loss factors for a � ber angle
of 45 deg are higher than the � ber angle of 15 deg.

The frequency and corresponding modal loss factor variations
of symmetric laminated undamped [µ4=¡µ4] [902 deg] [¡µ4=µ4]
and damped [µ4=¡µ4] [ISD 113] [¡µ4=µ4] plates as a function of
� ber angles are depicted in Figs. 7 and 8. The undamped bending

Fig. 7 Frequencies of symmetric laminated undamped [µ4/¡ µ4]
[902 deg] [ ¡ µ4/µ4] and damped [µ4 /¡ µ4] [ISD 113] [ ¡ µ4 /µ4] cantilever
plates.

Fig. 8 Loss factors of symmetric laminated undamped [µ4/¡ µ4]
[902 deg] [ ¡ µ4/µ4] and damped [µ4 /¡ µ4] [ISD 113] [ ¡ µ4 /µ4] cantilever
plates.

Fig. 9 Frequencies of antisymmetric laminated undamped [µ4/¡ µ4]
[902 deg] [µ4/ ¡ µ4] and damped [µ4 /¡ µ4] [ISD 113] [µ4/ ¡ µ4] cantilever
plates.

frequencies!1B and !2B and damped bendingfrequencies!1BD and
!2BD are decreasingas � ber angle µ is increasing because the axial
bending stiffness is decreasing. The undamped torsional frequen-
cies !1T and !2T have maximums at 30 deg, and the � rst damped
torsional frequency !1TD reaches a maximum at 45 deg. The sec-
ond damped torsional frequency !2TD has its maximum at 30 deg
because the shear stiffness has maximum value at those angles.
The undamped bending loss factors ´1B and ´2B have maximums at
45 deg, whereas undamped torsional loss factors ´1T and ´2T have
minimums at 45 deg because the energy dissipatingshear deforma-
tion is at a minimum for torsinalmodes and a maximum for bending
modes at 45 deg. The damped bending loss factors ´1BD and ´2BD

have maximums at 15 deg and decrease as the � ber angle increase
beyond15deg.The � rst damped torsionalloss factor´1TD hasa local
maximumat 30 deg,a localminimumat45deg,and tendsto increase
as � ber angle is increasing.The second damped loss factor ´2TD has
a maximum at 30 deg. Figures 9 and 10 show the frequency and
modal loss factor variationsof antisymmetric laminated undamped
[µ4=¡µ4][902 deg][µ4=¡µ4] and damped [µ4=¡µ4] [ISD 113]
[µ4=¡µ4] plates as a function of � ber angles, respectively. The un-
damped bending frequencies !1B and !2B and damped bending
frequencies!1BD and !2BD are decreasingas � ber angleµ is increas-
ing. The undamped torsional frequencies!1T and !2T and damped
torsional frequencies !1TD and !2TD reach maximums at 45 deg.
The � rst undampedbending loss factor ´1B has maximum at 60 deg,
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Fig. 10 Loss factors of antisymmetric laminated undamped [µ4/ ¡ µ4]
[902 deg] [µ4/ ¡ µ4] and damped [µ4 /¡ µ4] [ISD 113] [µ4/ ¡ µ4] cantilever
plates.

and the second undamped bending loss factor ´2B has a maximum
at 45 deg. The undamped torsional loss factors ´1T and ´2T have
minimums at 45 deg. The � rst damped bending loss factor ´1BD

is decreasing as the � ber angle is increasing. The second damped
bending loss factor ´2BD has maximum at 60 deg. The � rst tor-
sioanl damped loss factor ´1TD has minimum at 45 deg. The second
torsional damped loss factor ´2TD has minimum at 30 deg.

VI. Conclusions
A three-nodezig-zag triangular element was developedbased on

the improved layerwise zig-zag theory and the interdependentkine-
matic relations. The zig-zag triangular element is capable of ana-
lyzing the behavior of laminated structures having an arbitrary ply
thickness variation,extreme ply rigidity differences, and ply damp-
ing. The triangular element is in close agreement with experimen-
tallymeasurednaturalfrequenciesandmodal loss factorsforvarious
� ber anglesand border materials. This element is easy to implement
andmore accuratethanusinganassemblyof plateandsolidelements
for analyzing damped laminated structures (MSC/NASTRAN).

Appendix A: Zig-Zag Displacement Coef� cients
The coef� cients in the re� ned higher-orderzig-zag displacement

� eld are de� ned as
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where h is the total thickness of the laminate. N is the number of
layers in the laminate. Thus,
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Appendix B: Material Constitutive Constants
The resultant elastic material constants are de� ned as
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where [ NC B ].k/; [ NC S ].k/; [Z ], and [Z Z ] are de� ned as
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The resultant damping material constants .Ad ; Bd ; Dd ; Qd ; Ed ;
Gd , and Fd/ are calculated by substituting [ NC B ].k/[ ŃB].k/ and
[ NC S ].k/[ ŃS ].k/ for [ NC B ].k/ and [ NC S].k/, respectively,in Eqs. (B1–B4),
and [ ŃB ].k/ and [ Ń S].k/ are de� ned as
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The resultant inertia constants are de� ned as
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Appendix C: Interdependent Kinematic
Transformation Matrices

The transformationmatrices are
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where c1
x ; c2

x ; c3
x , and c4

x and c1
y ; c2

y; c3
y , and c4

y are de� ned in Eq. (6).

Appendix D: Complex Constitutive Relations
for Orthotropic Materials

The reduced-transformed elastic orthotropic material constants
for kth layer are de� ned as
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where

[ NC].k/ D [R.µk /][C ].k/[R.µk/]
T (D2)

and the elastic orthotropic material constants in principal axes are
de� ned as
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The explicit relations for Ci j in terms of engineering constants are
given as
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The transformedmaterial loss factors for the kth layer are de� ned as
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Ń11 Ń12 0 0 Ń16
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where
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and the material loss factors in principal axes are de� ned as
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and explicit relations for ´i are
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The transformationmatrix [R.µk /] is de� ned as
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Appendix E: Shape Functions
The shape functions are
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where i; j , and k D 1; 2; 3 and . /;i D @=@³i , and . /;i j D @2=@³i @³ j .
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