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Damping Analysis of Composite Plates
with Zig-Zag Triangular Element

D. G. Lee* and J. B. Kosmatka'
University of California, San Diego, La Jolla, California 92093-0085

A three-node flat triangular element incorporating layerwise zig-zag theory is developed that is suitable for
analyzing damped laminated composite structures. By the use of an interdependent kinematic relation, the higher-
order shear rotations are replaced by in-plane displacements, a transverse displacement, and section rotations,
which result in three translations and two rotations. Natural frequencies and modal loss factors of cantilevered
laminated plates with embedded damping layers are calculated with the zig-zag triangular element and compared
to the experimental results and MSC/NASTRAN results using a layered combination of plate and solid elements.
Frequencies and corresponding loss factors of symmetric and antisymmetric damped laminated cantilever plates

as a function of fiber angle are also calculated.

I. Introduction

NTEGRALLY embedding a viscoelastic damping layer within

a laminated composite structure is a very effective way of sup-
pressing fatigue-sensitive flexural vibrations. Embedded damping
layers dissipate vibratory energy, predominantly through shear dur-
ing flexural motion. There is aneed to develop an accurate laminated
theory that accounts for arbitrary ply thickness variations, extreme
rigidity differences,and ply loss factor variationsin laminated struc-
tures with embedded viscoelastic layers.

Yan and Dowell,! Rao and Nakra,”> Douglas and Yang,?> Miles
and Reinhall,* and Barrett® developed simple differential equations
for sandwich plates for a constraining layer damping model. Alam
and Asnani®’ developed a general multilayered plate model con-
sisting of an arbitrary number of alternating stiff and soft layers
of orthotropic materials. Johnson and KienholZ® analyzed a sand-
wich plate with a damping core by a modal strain energy method
implemented in NASTRAN. Malhotra et al.’ studied the effect of
fiber orientation on the vibration and damping behavior of thin or-
thotropictriangularplates. Saravanos and Pereira'® and Saravanos'!
incorporated discrete-layer laminate theory (DLLT) into the mod-
eling of composite structures with interlaminar damping layers.
DLLT assumes a discrete yet piecewise continuous displacement
field through the thickness. The number of unknowns of DLLT de-
pends on the number of subdivision through the thickness. Hence,
DLLT requires enormous computing costs to predict accurately
three-dimensionalstress distribution, which is vitally important for
the damping analysis of laminated composite structures with em-
bedded viscoelastic layers.

Di Sciuva'>~!* developed the higher-order zig-zag displacement
theory based on the refined higher-orderdisplacementfield that sat-
isfies a priori traction-freeboundary conditionssuperimposedby the
zig-zag displacement field. Di Sciuva' derived a higher-order zig-
zag displacement theory and developed a three-node, conforming,
triangular element that has 10 nodal degrees of freedom (DOF):
two in-plane displacements, two shear rotations, and a transverse
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displacementwith its first and second derivatives (section rotations
and curvatures). This element has been successfully applied to the
static bending and free vibration behavior of composite plates. Cho
and Parmerter'® derived an efficient higher-order zig-zag displace-
ment field and developed a triangular bending element based on
the shape functions suggested by Specht.!” This resulted in a non-
conforming element having five nodal DOF: two shear rotations, a
transverse displacement, and the two section rotations. Lee,'® Lee
and Waas,'*?° and Lee et al.?! developedsectorzig-zagelement and
studied the effect of fiber orientation on the stability and transient
response of spinning compositedisks under frictionalload. Averill*2
and Averill and Yip?® have developed the higher-order zig-zag dis-
placement field and corresponding beam elements and accurately
predicted the stress distribution through the thickness of laminated
structures.

In the present work, a three-node flat triangularelementusing the
zig-zag theory and interdependentkinamatic relations is developed.
With interdependentkinematic relations, the higher-order shear ro-
tation DOF are replaced by the in-plane displacements, a transverse
displacement, and the section rotations. The remaining transverse
displacementand section rotations are interpolated based on shape
functions suggested by Specht!” thatresult in three translationsand
two rotations at each vertex of the triangular element. Natural fre-
quencies and modal loss factors of a cantilevered rectangular lami-
nated plate with an embedded damping layer are calculated with the
present three-node zig-zag triangular element. Various fiber orien-
tations, border materials, and damping patch sizes are investigated.
Current results are compared to experimental results and analytical
(MSC/NASTRAN) resultsusing a layered combinationof plate and
solid elements. Frequencies and correspondingloss factors of sym-
metric and antisymmetric damped laminated cantilever plates as a
functionof fiber angle are also calculated with the zig-zag triangular
element.

II. Theoretical Development

Consider a plate composed of multiple layers. The improved lay-
erwise zig-zag displacement fields for the kth layer are defined as
in Ref. 24:

ow
s

Bwo
k k k
v = — i hy) ¢ +h3),
w® = w, (M
where uy and v, are the in-plane displacements, wy is a transverse

displacement, ¢, and ¢, are the higher-order shear rotations, and

k) py k) g (k) .
hyy.hi5, hyl, hy, are defined as follows:
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where f1, fa, f3, fa, i, @i, b, b3i, o, €3y, dyy, d3; are evaluated
as shown in Appendix A.

A. Interdependent Kinematic Relations

In the case of symmetric layups, the in-plane displacement
distribution through the thickness should be symmetric about the
midplane, which suggests that integration through the thickness of
in-plane displacements (u®, v®), multiplied by normal material
constants in each direction set to zero, gives the interdependent
kinematicrelationbetween the higher-ordershearrotations (¢., ¢,),
in-planedisplacements (1, vy), the transversedisplacementw,, and
the section rotations (dw,/dx, dwy/dy) as follows:

+h%e, + hj";(py) dz=0

k=1"2-
N 2k
Z/ Cg;( 22 g+ hi";%) Z=0 (3)
k=1"YZk-1

after the integration through thickness is performed, Eq. (3) is read
as

ow
All”—Bll +Q11¢\'+Q12¢»_0

ow
Axpv — 3225 + 03¢ + Qug, =0 “4)

where (A, B, Q) are defined in Appendix B. Equation (4) is rear-
ranged for ¢, and ¢, in terms of ug, vy, dwy/dx, and dw,/dy as

Uo
Vo
s _[ @ @ =] aw,
(= / / / / (5)
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ady
where the constants in Eq. (5) are defined as
o= A1 Oy 2= B0y JE ApOis
T TTD 3
= By 01, o= A1 0 2= B 03
Y D YD )
. AynOn . By 0
"=, "= D,
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B. Strain-Displacement Relations
The linear strain-displacement relations for the kth layer in a
Cartesian coordinate system are defined as follows:

(k) (k)
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and the general membrane-bending strain vector {¢} using the
interdependentkinematic relation (5) is defined as

(e} = [Ts1{e} C)

where [T3] is defined in Appendix C and {¢} is

_ dug dvy duy vy 92w, 9wy 0wy |
{E}z{_U_U_U_U_U_U U} (10)

The general higher-order shear rotation vector {y } using the inter-
dependent kinematic relation (5) is defined as

{y} =111y} an

where [7s] is defined in Appendix C and {y} is

awo BwU}T (12)

{y}= {Mo, Vo, 5 By

C. Complex Constitutive Relations
The reduced-transformedcomplex orthotropic stress-strain rela-
tion under the plane stress assumption (o, =0) for any individual
layer (kth layer) is defined as
(o} = (IC19 +i1C10 ) e} (13)
where the stress and the linear elastic strain are read as
(0% = {01, 0y, Tye, Ty T} (14)

T
{e}(k) = {e,, €y, Vyzr Vxzs ny}(k) (15)

The reduced-transformed material constants [C_’ ] and transformed
loss factors [17] are defined in Appendix D.

D. Strain Energy and Kinetic Energy
The bending strain energies per unit area of the N-layered plate
are defined as

S

k=1

a®e® 4 g®e® T(k)%(}f)> dz:| dA
(16)

and the shear strain energies per unit area of the N-layered plate are
defined as

1 / i /Zk (k) (k) (k) , (k)
== T2V + 10 )dz dA (7
2 A |: k=1Y2k-1 ’ ’

The kinetic energy per unit area of the N-layered plate is given by

S (C)
(5 (5 ]
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The stress resultants are defined as follows:

N, Ny
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Afterthe integrationthroughthe thicknessis performed, the bending
strain energy is written as

1 A
B=3 /{E}T[TB]T[DB][TB]{E}dA (22)
A

where the LﬁBJ is defined as
| D] = [Dy) +i[D§] (23)
[ [Al  —[B] QI ]
[Ds]= | —[Bl [D] —I[E]
(01" —[E”" [G] J
[Ad  —[Bd [0
[D4]=|-1B] [P —IEd (24)
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The shear strain energy is written as
1 T 1T 1 -
Us=7 {y} 1Ts1" [DslTs1{y} dA (25)
A

where the Lﬁsj is defined as
LDs] = [F1+ i[F4] (26)

The resultantelastic material constants (A, B, D, O, E, G, F) and
the damping constants A, B,, Dy, Q4. E4, G4, and F; are defined
in Appendix B. The velocity vector using the interdependentkine-
matic relation (5) is defined as

V=I[T,1Vx 27)

where | T, | is defined in Appendix C and the reduced velocity vector
Vi is defined as

dw, Ay )
Vi = {ttg, o, o, —>, — (28)
dx  dy

and the effective inertia constants are defined as

[Z,]1=
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(29)

where Iy, I, I, H!', H'2, H, H?, H!', H}?, H?', H?, H},

i
HZ, Hz21 JHE, H)?, and H21 are defined in Appendix B. The kinetic

energy is wrltten as

1
=3 / Vel [T, ) 1Z,)IT,){ Vg )} dA (30)
A

III. Three-Node Triangular Element

A three-node triangular element based on the improved higher-
order zig-zag displacement field (1) is developed (Fig. 1). The in-
plane displacements u and v, are linearly interpolated as

Uy = 23:"[”6’ vy = i:n[vé 31

i=1 i=1
and the shape function n; is defined as
n; =¢; (32)

where ¢; are the areal coordinate systems in a triangular element
(Fig. 1). The transverse displacement wy, which is C! continuous
subparametric, is interpolated using the shape functions suggested
by Specht!” as

3

wo =Y (qw)+ 80! + hi6}) (33)

i=1

. a ; ]
o =22, g (34)
; ay ; ) 0x ;

t'7 as

where

and ¢;, g;, and h; are defined by Spech
g =P — P 3+ Py 3+2(P 16— Piie)
& =bj(Piys— Piyi3) +biPiss

hi =cj(Prye — Piy3) +cPigs (35)

G+6h+4=1
Area: A

Fig.1 Geometry and coordinate system for triangular element.
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Here, i, j, and k are the cyclic permutations of 1, 2, and 3 and
b[=yj'—)% Ci = X — Xj (36)

where x; and y; are the coordinates of each three vertices of the
triangular element. P; are defined by Specht!” as

Py ={01. .05, 6160, 0203, 680, 81
+ 20060301 — pa)t — (1 +3u3)8 + (1 +313) 8318, ¢
+ 1006030 = p)G — (438 + (1 +3u)0185 6
+ 2006030 — w6 — (1438 + (1L +3u)51) (37

where

B0 -0 Lk
- Moy = —7—, M3 =
i L A

M1 = (38)

where /1, [,, and I5 are the lengths of the three sides of the triangle

(see Fig. 1). The membrane-bending and transverse shear strain

vectors with respect to the areal coordinate system are defined as
{e} = [Npl{d.} (39)
{y} = [Nsld.} (40)

where the shape functions Nz and N are defined in Appendix E.
The elemental degrees of freedom {d,} are defined as

{d.} = ({d .}, {de}a, {de)s) 41)
where

{d,}; = {uy, vy, wh. 60,00},

x?

i=1,2,3
Substituting Egs. (39) and (40) into Egs. (22) and (25) leads to the

stiffness matrices for the membrane-bending and transverse shear
part as

1 =0
Kzl = / / [N [T5]" (DTN 12AdE, A, (42)
0 0
1 1=
(K] = / / [NsIT[Ts1" [Ds1[Ts][Ns12A dg, dgy (43)
0 0
1 1=
[ki]= / / [(Ns17[T51" [ D4 [ T51INs124 dg, dgy  (44)
0 0

1 1=
[k{] = f f (N7 [T517 [ DE]I TSNS 12A gy dgy - (45)
0 0

where sixth-order single-summation Gauss quadrature numerical
integrationfor trianglesis used. The stiffness and damping matrices
are defined as
[K1=[Ks] +[Ks], [Kpl=|K5] +[K$]  @6)
The velocity vector is defined as
Ve = [N,1{d.} (47)
where |N,] is defined in Appendix E. Substituting Eq. (47) into

Eq. (30) leads to the consistent mass matrix

1 =0
[M] =/ / INJ T [ZIT,IIN,2AdS dgy - (48)
0 0

where the integration is conducted numerically with sixth-order
single-summation Gauss quadrature.

IV. Governing Equations

The governing differential equations of motion for laminated
plates incorporating the improved higher-order zig-zag theory are
derived using Hamilton’s principle, as follows:

[MI{d} + (IK]+i[KpDid} = {0} (49)

The eigenvalue problem Eq. (49) is solved to find the natural fre-
quencies and modal loss factors by the modal strain energy method
(MSE) with the subspace iteration method. The modal loss factor
of the nth mode is given by

_ {Xn}T[KD]{Xn}

" T K 1)

where the nth normal mode {y,} is found by solving the undamped
free vibration problem.

(50)

V. Numerical Results

The natural frequencies and modal loss factors of various can-
tilevered rectangular laminated plates with an embedded damping
layer are calculated. Various fiber orientations,border materials,and
damping layers are investigated. Current calculated results are com-
pared to the experimental results and analytical (MSC/NASTRAN)
results in which the face sheets are modeled with plate elements
(CTRIA) and the damping core is modeled with solid elements
(CPENTA). The plate nodes are to be offset to one surface of the
plate, coincident with the corner nodes of the adjoining solid ele-
ments. The offset plate elements have coupling between stretching
and bending deformations.

The cantilevered laminated rectangular plates consisted of
graphite/epoxy (GE) face sheets and a damping core layer. See
Fig. 2 for the components of the damped plates and Fig. 3 for
the geometric definition of the damping core layer. The mate-
rial properties for GE used for the face sheets are as follows:

Graphite/Epoxy face sheet(8ply, 0.02inch )
1 (040,/0)

Damping Material(2ply, 0.005inch )
(ISD113)

0

Border Material(2ply, 0.005inch )
(0G/E, 90G/E, AF32)

\¢

Graphite/Epoxy face sheet(8ply, 0.02inch )
(0,/48,/0;)

Fig.2 Damped plate components.

¢ e=0.25"

A
d=2.5" i
¢ =875 P b=3"
\ 4
< a9, >

Fig.3 Geometry of central core layer.
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Table 1 Details of finite element scheme

Present MSC/NASTRAN
Parameter (THZ3R) (CTRIA/CPENTA)
Elements 1584 4752
Nodes 855 1710
DOF 4275 10260

Table2 Calculated and experimental frequencies of cantilevered
undamped plate| 05/% 15,/0, deg|| 90 deg|| 0,/£ 15,/0, deg]

Present w, Hz Experiment
Mode (2x6) 4 x12) (6 x18) w, Hz n
1B 32.18 32.05 32.01 31.21 0.003
1T 106.88 98.54 96.84 100.0 0.012
2B 208.46 202.03 200.68 194.6 0.004

Table 3 Frequencies and loss factors of cantilevered damped plate
[ 02/ 15,/0, deg|| ISD 113 — 0 deg GE|| 0,/% 15,/0, deg|

140
120 .
7
— e
b e
\% 100 1 ) e
= -
< _
=] 80 4 ¥
= -
5 L ,
15 e —e— Manulacturer's data
£ 60 ~
7]
2
£ -
g 40 -
A -
[
0 T T T T
200 400 600 800 1000
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11
e
1.0 o«
. //.,,,
o
L
P /
5 08+ ’_o‘/
[
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i
[
0.6 T T T T
200 400 600 800 1000

Frequency(Hz)
Shear loss factor

Fig. 4 Mechanical properties of ISD113 viscoelastic polymer at 68°F
(20°0C).

E; =2 x 107 psi (138 GPa), E; = 1.4 x 10° psi (9.7 GPa), G =
8 x 10° psi (5.5 GPa), Gy =5 x 10° psi (3.5GPa), v, =0.3, p =
1.485x 10~* Ibf-s*/in.* (1587 kg/m?), and h,, =0.0025 in.
(0.0635 mm). The loss factors used for the GE lamina are found
by correlating the experimental results of an undamped GE plate to
the finite element solutions by the MSE:

n. = nr = 0.0026, ner = nrr = 0.026

The 3M ISD113 is used for the central damping core in this
study, and the shear modulus and loss factor for ISD113 are found
in the manufacturer supplied nomogram (Fig. 4) for the desired fre-
quency at the room temperature (68°F) (20°C): pisp113 =0.917 x
10~* 1bf-s*/in.* (980 kg/m®). 3M AF32 is used for the central
core border material, and the shear modulus and loss factor for
AF32 are found in the manufacturer supplied nomogram (Fig. 5)
for the desired frequency at the room temperature (68°F) (20°C):
Parz2 =0.989 x 10~* Ibf-s%/in.* (1057 kg/m?). Figure 6 shows the
mesh representationused for the finite element analysis. In Table 1,
a comparison of the required nodes and DOF for the current model
and MSC/NASTRAN model are presented.

The natural frequencies and modal loss factors are calculated by
the MSE and compared to the experimental results and NASTRAN
results with the MSE.

Analytical results using the present three-node zig-zag triangular
element (THZ3R) are presentedin Tables 2-8 along with experimen-
tally measuredresultsand analyticalresultsusing MSC/NASTRAN.
The vibration frequencies and loss factors of the first bending (1B),
secondbending (2B), and first torsion (1T) modes of the cantilevered
composite plates are presented. The current results show good
agreement with the experimentally measured natural frequencies
and modal loss factors for various fiber angles and border materi-
als. MSC/NASTRAN results with plate-solid elements show good

w, Hz n
Mode Experiment Present NASTRAN Experiment Present NASTRAN
1B 28.4 29.94 30.18 0.014 0.016 0.011
1T 92.5 93.58 94.07 0.017 0.024 0.011
2B 163.5 157.48  159.43 0.059 0.065 0.059
24000
22000 |
P U 3
P
20000 1 " i *
z o
Z 18000 | e
L
= 16000 4 i
5 ;‘
% 14000 @
E !
g 12000
-
a
10000
8000 + : . .
0 200 400 600 800
Frequency(Hz)
Shear modulus
0.24
0.22 4
e g ®
0.20 - e e @ @ d
018 o
g 016
S o014
0.12
0.10 ‘
0.08 . . :
0 200 400 600 800

Frequency(Hz)
Shear loss factor
Fig.5 Mechanical properties of AF-32 adhesive at 68°F.
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Fig. 6 Finite element mesh representation.
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Table4 Frequencies and loss factors of cantilevered damped plate
[ 02/£15,/0, deg] | ISD 113 90 deg GE| | 0,/% 15,/0, deg|

w, Hz

U

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 2797 2993 30.18 0.018 0.016 0.011
1T 83.23  93.56 94.05 0.022 0.024 0.011
2B 163.7 157.43  159.37 0.063 0.065 0.059

Table 5 Frequencies and loss factors of cantilevered damped plate
[ 02/%15,/0, deg| [ISD 113— AF 32]| 0,/+ 15,/0; deg|

—h— 18
--d--1T
— -k - 2B
— 4 — 2T
—&— 1BD
--®--1TD
— - - 2BD
— @ — 2TD

Natural Frequency(Hz)

Fiber Angle(0)

Fig. 7 Frequencies of symmetric laminated undamped [64/— 04]
[90, deg] [— 64/64] and damped [04/— 04] [ISD 113] [— 6,4/6,] cantilever

w, Hz n
Mode Experiment Present NASTRAN Experiment Present NASTRAN
1B 27.46 29.82 30.05 0.028 0.02 0.016
1T 87.22 93.03 93.44 0.035 0.029 0.016
2B 161.4 155.04  156.55 0.077 0.077 0.071

Table 6 Frequencies and loss factors of cantilevered damped plate
| 02/£45,/0, deg| [ISD 113— 0 deg GE]| 0,/£45,/0, deg]

plates.

w, Hz n
Mode Experiment Present NASTRAN Experiment Present NASTRAN
1B 24.83 26.32 26.51 0.008 0.007 0.003
1T 124.6 121.44  122.07 0.015 0.029 0.021
2B 147.9 148.32  150.05 0.037 0.033 0.027

Table 7 Frequencies and loss factors of cantilevered damped plate
| 0,/£45,/0, deg] | ISD 113— 90 deg GE| | 0,/%45,/0, deg|

w, Hz n
Mode Experiment Present NASTRAN Experiment Present NASTRAN
1B 24.44 26.32 26.51 0.007 0.008 0.003
1T 128.2 121.39 122.04 0.012 0.029 0.021
2B 145.3 148.25  149.99 0.05 0.033 0.027

Table 8 Frequencies and loss factors of cantilevered damped plate
| 0,/%45,/0, deg| [ISD 113 — AF32]| 0,/%45/0, deg]

w, Hz n

Mode Experiment Present NASTRAN Experiment Present NASTRAN

1B 23.93 26.27 26.44 0.017 0.01 0.006
1T 119.5 120.02  120.5 0.033 0.035 0.028
2B 144.0 146.49  147.67 0.052 0.043 0.038

agreement in natural frequencies but larger errors in the modal loss
factors because the plate-solid elements do not accurately repre-
sent the shear deformations in the damping core. The accuracy of
the MSC/NASTRAN plate-solid-plate model can be improved by
adding more solid elements through the core thickness but at an
enormous increase in computational cost.

A comparison of Tables 2 and 5 reveals that embedding an ISD
113/AF-32 damping core in a composite laminate can greatly in-
crease the damping loss factor over an undamped plate. These in-
creases for the first three modes are 9.3, 2.9, and 19.3 times, respec-
tively. A comparison of Tables 3, 4, and 5 for a fiber orientation of
15 deg and Tables 6, 7, and 8 for a fiber orientation of 45 deg reveals
that an AF32-border material produces higher modal loss factors
than a unidirectional GE border because AF32 itself has significant
damping capability. Further examination of Tables 3-8 reveal that
the bending frequencies and corresponding modal loss factors for
the fiber angle 15 deg are greater than for the fiber angle 45 deg,
whereas the torsional frequencies and loss factors for a fiber angle
of 45 deg are higher than the fiber angle of 15 deg.

The frequency and corresponding modal loss factor variations
of symmetric laminated undamped [0,/—6,] [90, deg] [—04/64]
and damped [6,/—64] [ISD 113] [—64/64] plates as a function of
fiber angles are depicted in Figs. 7 and 8. The undamped bending

0.4

——ie— 1B

0.35 dee-IT

i 0.3 — -k -2B

g 025 —A—2T
‘E 0.2 —— 1BD
8 015 --®--1D
01 — - 2BD
005 — - 2TD

0
0 15 30 45 60 75 90
Fiber Angle(6)

Fig. 8 Loss factors of symmetric laminated undamped [04/— 64]
[90, deg] [— 64/64] and damped [04/— 04] [ISD 113] [— 6,4/6,] cantilever
plates.

600

—4&—1B
= - o ke
St B .
& 400 -7 N
5 _-x So —A—2T

-

g 300 & o S —e— IBD
= P it SS]|--e--11D
€ 200 4 -~ <f =~ »
E - TS g Ao, e - _ — - - 2BD
Z 100§zl e RIS

S °----" “-“——u-:;‘:"j:-:‘:r.._._ :;:

0 - = : . :

0 15 30 45 60 75 90

Fiber Angle(0)

Fig. 9 Frequencies of antisymmetric laminated undamped [64/— 4]
[90, deg] [64/— 04] and damped [64/— 6,] [ISD 113][64/— 64] cantilever
plates.

frequenciesw; p and w5 and damped bending frequenciesw; gp and
wypp are decreasing as fiber angle 6 is increasing because the axial
bending stiffness is decreasing. The undamped torsional frequen-
cies w;r and w,7 have maximums at 30 deg, and the first damped
torsional frequency w,7p reaches a maximum at 45 deg. The sec-
ond damped torsional frequency w,rp has its maximum at 30 deg
because the shear stiffness has maximum value at those angles.
The undamped bending loss factors , and 17,5 have maximums at
45 deg, whereas undamped torsional loss factors 7,7 and 7,7 have
minimums at 45 deg because the energy dissipating shear deforma-
tionis at a minimum for torsinal modes and a maximum for bending
modes at 45 deg. The damped bending loss factors n,zp and 1, p
have maximums at 15 deg and decrease as the fiber angle increase
beyond 15 deg. The first damped torsionalloss factorn, rp has alocal
maximumat 30 deg, alocalminimum at45 deg, and tendsto increase
as fiber angle is increasing. The second damped loss factor n,7p has
a maximum at 30 deg. Figures 9 and 10 show the frequency and
modal loss factor variations of antisymmetric laminated undamped
[64/—641[90, degll04/—64] and damped [6,/—6,] [ISD 113]
[64/—64] plates as a function of fiber angles, respectively. The un-
damped bending frequencies w,p and w,p and damped bending
frequenciesw; pp and w,pp are decreasingas fiber angle § is increas-
ing. The undamped torsional frequencies w;r and w,r and damped
torsional frequencies w;rp and w,rp reach maximums at 45 deg.
The first undamped bending loss factor 1,  has maximum at 60 deg,
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Fig. 10 Loss factors of antisymmetric laminated undamped [04/— 64]
[90, deg] [04/— 04] and damped [64/— 6,4] [ISD 113][6,4/— 64] cantilever
plates.

and the second undamped bending loss factor 1,5 has a maximum
at 45 deg. The undamped torsional loss factors 7,7 and n,r have
minimums at 45 deg. The first damped bending loss factor 1, gp
is decreasing as the fiber angle is increasing. The second damped
bending loss factor 1,5p has maximum at 60 deg. The first tor-
sioanl damped loss factor n,7p has minimum at 45 deg. The second
torsional damped loss factor 7,7p has minimum at 30 deg.

VI. Conclusions

A three-nodezig-zag triangular element was developed based on
the improved layerwise zig-zag theory and the interdependentkine-
matic relations. The zig-zag triangular element is capable of ana-
lyzing the behavior of laminated structures having an arbitrary ply
thickness variation, extreme ply rigidity differences, and ply damp-
ing. The triangular element is in close agreement with experimen-
tally measurednatural frequenciesand modal loss factors for various
fiber angles and border materials. This elementis easy to implement
and more accuratethanusing an assembly of plate and solid elements
for analyzing damped laminated structures (MSC/NASTRAN).

Appendix A: Zig-Zag Displacement Coefficients

The coefficients in the refined higher-orderzig-zag displacement
field are defined as

-[(E)(E-)
_ (Zh + I:IZ_I:I azf)(?)hz + I:IZ_;I d3;):| /De (AD)

S(ENN
Eeg)e
S(ERN
)

N-1
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- (2h+2d2[)(3h2+2a3;)i| / D, (A4)
i=1 i=1

N-1 N-1
D, = |:(3h2 + Z d3z)(3h2 + Z ﬂl3z)
i=1 i=1
N1 N -1
) -
i=1 i=1

where £ is the total thickness of the laminate. N is the number of
layers in the laminate. Thus,
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Appendix B: Material Constitutive Constants
The resultant elastic material constants are defined as

N %
[A,B,D]:Z/ [1,z,221[C 1% dz (B1)

k=1 Yz
N % B
[Q,E]=Z/ [1.2][C41[Z] dz (B2)
k=1 Zk—1
N 2% B
Gl=)_ / [Z])[C1P[Z]dz (B3)
k=1 Zk—1
N 2%
Fl=) / (221" [C511ZZ) dz (B4)
k=1 Zk—1
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where [C5]®, [Cs]1®, [Z], and [Z Z] are defined as

- - - (k)
] [Cn o cm]
[CB](k)= Ci, Cxn Cy (BS)
C16 C26 C()()J
G Ci]”
[Cs® =] " 2" (B6)
Cys Css
By RS 00
(zZ1={ 0 o A¥ AY (B7)
Lot n%
h(k)7 h(k)7
[ZZ]{ [ (®8)
hll.z hlZ.z

The resultant damping material constants (A,, B,, Dy, O, E,,
G4, and F,) are calculated by substituting [Cz]®[775]® and
[Cs1®[7s]® for [C 1™ and [C4]®, respectively,in Eqs. (B1-B4),
and [75]% and [775]® are defined as

(k)

M1 N2 Tis
[Y_IB](k) = N1 7N T (B9)
Me1 Tex Tes
_ _ qm
[is1® = [744 745} (B10)
Ns4 155

The resultant inertia constants are defined as

(o, I, ) = Zf p®(1,z,2%)dz (B11)
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Appendix C: Interdependent Kinematic
Transformation Matrices

The transformation matrices are

1 0 o o0 o 0 0|
0 0 0 1 0 0 0
0 1 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
[Tg] = 0 0 0 0 0 0 2 (C1)
—c! 0 0 c2 0o -
cl —ci 0 0 —ci 0 ct
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where ¢}, ¢, ¢}, and ¢} and ¢| 3> and ¢} are defined in Eq. (6).

Appendix D: Complex Constitutive Relations
for Orthotropic Materials

The reduced-transformed elastic orthotropic material constants
for kth layer are defined as

— _ - (k)
Cyh Cnp O 0 Cis

C‘12 C_‘22 0 0 C_‘26

[C1®=]0 0 Cyu Cis O (D1)
0 0 C4s Cs5 O
Lélﬁ C_‘26 0 0 éééJ
where
[C1? = [RE)NCIVIR G (D2)

and the elastic orthotropic material constants in principal axes are
defined as

k)

[C1%=|0 0 Cyu O

0 0
LoooocéﬁJ

The explicit relations for C;; in terms of engineering constants are
given as

(D3)

S o o O

LB o _wrkr
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The transformed material loss factors for the kth layer are defined as

_ _ _ (k)
nm N2 0 0 N6

N1 M 0 0 C 26
[ﬁ](k) = 0 0 7_)44 7_)45 0 (D5)
0 0 7nss 755 0
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1% = [R(=01n1[R 61" (D6)

and the material loss factors in principal axes are defined as

where

(k)

0 0 0 0
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and explicitrelations for n; are

N =1L, N2 =1Mr, Nas = N11

Nss = 1MLr, Nee = NLT (D8)

The transformation matrix [R(6;)] is defined as

[R(O] =
cos? 6 sin? 6, 0 0 —sin 26,
sin? 6, cos? 6 0 0 sin 26,
0 0 cosf, sinf, 0
0 0 —sinf, cosb, 0
sin6; cosf, —sinby cos;, 0 0 cos? 6, — sin® 6,

(D9)

Appendix E: Shape Functions

The shape functions are

;] =

i 0 0 0 0
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(E5)
[N,]=|N!. N2, N? | (E6)

where i, j,andk=1,2,3 and (); =9/8¢;, and () ;; = 9%/0¢;0¢;.
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